www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieMengenaussage: wahr || falsch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Mengenaussage: wahr || falsch
Mengenaussage: wahr || falsch < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenaussage: wahr || falsch: Bitte um Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:02 Sa 28.09.2019
Autor: bondi

Aufgabe
[mm] A:= [ \medspace 0, \infty \medspace [ \thickspace \cup \medspace ] -3, -1 \medspace ] [/mm] ist abgeschlossen

Hallo,
zuerst die Definitionen:

Sei [mm]D \subseteq \mathbb{R} [/mm]

Die Menge [mm]D[/mm] heißt

i) offen, falls [mm]\forall x \in D \medspace \exists \thinspace \epsilon > 0 [/mm] mit [mm] U_\epsilon(x) \subseteq D [/mm]

ii) abgeschlossen, falls [mm] \mathbb{R}^n \ D [/mm] offen ist

iii) beschränkt, falls [mm] \exists \thinspace M > 0 [/mm] mit [mm] \Vert x \Vert \leq M \thickspace \forall x \in D [/mm]

iv) kompakt, falls D abgeschlossen und beschränkt ist.

v) Das Innere von D: [mm] D^\circ := \{ x \in D \medspace | \medspace \exists \medspace \epsilon > 0 \} [/mm] mit [mm] U_\epsilon(x) \subseteq D [/mm]
( Größte offene Menge, die in D enthalten ist )

vi) Abschluss von D: [mm] \overline{D} := \mathbb{R}^n \negthickspace[/mm] \ [mm] ( \mathbb{R}^n \negthickspace[/mm] \ D )
( Kleinste abgeschlossene Menge, die D enthält )

vii) Rand von D: [mm] \partialD:= \overline{D} [/mm] \ [mm] D^\circ [/mm]

Lösung:

A := [ [mm] 0,\infty [/mm] [ [mm] \thinspace \cup \medspace]-3, [/mm] -1] = ] [mm] -3,\infty [/mm] [

[mm]\mathbb{R}[/mm] \ A [mm] = ] -\infty, -3 ] [/mm]

[mm] \Rightarrow \mathbb{R} [/mm][mm] \A [/mm] ist nicht offen, denn [mm] ]\thinspace-3-\epsilon, -3+\epsilon \thinspace[[/mm]  [mm]\medspace \notin \mathbb{R} [/mm] \ A [mm] \forall \epsilon > 0 [/mm], A ist nicht abgeschlossen.

Also falsch.

        
Bezug
Mengenaussage: wahr || falsch: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Sa 28.09.2019
Autor: Al-Chwarizmi


> [mm]A:= [ \medspace 0, \infty \medspace [ \thickspace \cup \medspace ] -3, -1 \medspace ] [/mm]       ist abgeschlossen

(die Definitionen habe ich hier nicht zitiert; darin ist aber nicht alles korrekt notiert)


> Lösung:
>  
> A := [ [mm]0,\infty[/mm] [ [mm]\thinspace \cup \medspace \ ]-3, -1\,]\ =\ ]-3,\infty\, [[/mm]

Dies stimmt nicht, denn zwischen den beiden Teilintervallen von A steckt noch ein weiteres Intervall als Lücke
  

> [mm]\mathbb{R}[/mm] \ A [mm] =\ ] -\infty, -3\, ][/mm]

Dies ist folglich auch falsch.
  

> [mm]\Rightarrow \mathbb{R}\ \setminus A[/mm] ist nicht offen, denn

> [mm]]\thinspace-3-\epsilon, -3+\epsilon \thinspace[[/mm]  [mm]\medspace \notin \mathbb{R}[/mm]
> \ A [mm]\forall \epsilon > 0 [/mm],

Da ist wohl (wieder) was mit LaTeX verunglückt, aber man merkt irgendwie, was wohl gemeint war ...

>  A ist nicht abgeschlossen.
>  
> Also falsch.

Ich würde den Nachweis wohl ganz kurz gestalten, durch konkrete Definition einer Folge  $ [mm] [/mm] $  von in A liegenden Gliedern, die konvergent ist und einen Grenzwert besitzt, der nicht in A liegt.
Nämlich etwa:    $ [mm] a_n\ [/mm] :=  -3+ [mm] \frac{1}{n} \qquad [/mm] ( n [mm] \in \IN [/mm] ) $

LG ,   Al-Chw.



Bezug
        
Bezug
Mengenaussage: wahr || falsch: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Sa 28.09.2019
Autor: HJKweseleit

Du kannst direkt die  Definition benutzen:

ii) Bilde [mm] \IR [/mm] \ A = [mm] ]-\infty|3] \cup [/mm] ]-1|0[
i) Zeige: Für x=3 gibt es keine offene Umgebung in dieser Menge.

Bezug
        
Bezug
Mengenaussage: wahr || falsch: Antwort
Status: (Antwort) fertig Status 
Datum: 00:21 So 29.09.2019
Autor: ChopSuey

Sei $A = ]-3,-1] [mm] \cup [0,\infty[$ [/mm]

Eine Teilmenge $A$ eines topologischen Raumes $X$ ist abgeschlossen in $X$ genau dann, wenn das Komplement [mm] $X\setminus [/mm] A$ offen ist.

Es ist [mm] $\IR \setminus [/mm] A = [mm] \IR \setminus \Big( [/mm] ]-3,-1] [mm] \cup [0,\infty[ \Big)= ]-\infty,-3] \cup [/mm] ]-1,0[ $

Das Komplement $ [mm] \IR \setminus [/mm] A = [mm] ]-\infty,-3] \cup [/mm] ]-1,0[$ ist weder offen noch abgeschlossen. Also ist $A$ nicht abgeschlossen  in $X$.

LG,
ChopSuey

Bezug
                
Bezug
Mengenaussage: wahr || falsch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 So 29.09.2019
Autor: bondi

A ist abgeschlossen, wenn das Komplement [mm]R \medspace \textbackslash \medspace A[/mm] offen ist.

Verstehe ich das richtig, dass eine Menge immer erst als offen/abgeschlossen gilt, wenn beide Seiten des Intervalls offen/abgeschlossen sind?

Bezug
                        
Bezug
Mengenaussage: wahr || falsch: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 So 29.09.2019
Autor: Gonozal_IX

Hiho,

> Verstehe ich das richtig, dass eine Menge immer erst als
> offen/abgeschlossen gilt, wenn beide Seiten des Intervalls
> offen/abgeschlossen sind?

Für die Grundmenge [mm] $\IR$ [/mm] und reine Intervalle D ist das richtig.
Dir sollte aber bewusst sein, dass wenn du entweder eine andere Grundmenge hast oder keine reinen Intervalle, du das nicht mehr anwenden kannst.

Betrachtest du bspw. die Grundmenge $X = ]0,1[$, so ist das Teilintervall [mm] $\left]0,\frac{1}{2}\right]$ [/mm] abgeschlossen in X, aber natürlich nicht in [mm] $\IR$. [/mm]

Gruß,
Gono

Bezug
                                
Bezug
Mengenaussage: wahr || falsch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Fr 04.10.2019
Autor: bondi

Danke für deinen Tipp. Ich achte drauf.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]